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Classical Landauer’s principle

What are the ultimate physical limitations
to reducing the dissipation in computing?
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CLASSICAL LANDAUER’S PRINCIPLE - OUTLINE

Logical irreversibility in computing not only is unavoidable,
but is also to some extent necessary
Logical irreversibility⇒ Physical irreversibility
Physical irreversibility⇔ Entropy increases

⇒ Heat generation

Each bit reset operation is accompanied ed by a heat
production of at least

∆Q = κT log 2 ,

κ = Boltzmann constant ' 1,380× 10−23 J K−1
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IRREVERSIBILITY

LOGICAL IRREVERSIBILITY A logical/computing process is
irreversible when the output is not sufficient to
reconstruct unambiguously the input.

Example: “And” gate

IN OUT
0 0 0
1 0 0
0 1 0
1 1 1

PHYSICAL IRREVERSIBILITY A physical process is irreversible if its
time-reversed process is forbidden by the II law of
thermodynamics.
Overall increasing of the entropy.

Example: Isothermal compression of a gas in a piston with friction
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WHY LOGICAL IRREVERSIBILITY?
ACCORDING TO LANDAUER

It seems not possible to design a unique conservative
process to reset a bit in its “0” or “1” state to, say, “1” state,
regardless of the initial state
Logical reversibility requires storage of extra information at
each step
⇒ Outgrowing resources needed
⇒ It is impossible to execute non-terminating programs
To load the program, all the needed bits have to be reset
The irreversible reset operation is just moved at the
beginning of the program!

MARCO PEZZUTTO AND YASSER OMAR MINIMAL ENERGY DISSIPATION - LANDAUER’S PRINCIPLE



ENTROPY IN THERMODYNAMICS

System + thermal reservoir at temperature T ,
δQ = heat absorbed by the system from the reservoir,

Entropy SA,B :=

∫ B

A,rev

δQ
T

First law
dE = δQ − δL = TdS − δL

⇒ if energy is conserved we have the connection

δQ = TdS = δL

Second law

dStot = dSSys + dSR, dSR = −δQ
T

dStot ≥ 0
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ENTROPY AND STATISTICAL PHYSICS

BOLTZMANN ENTROPY

S = κ log W

W = Number of microstates compatible with the given
macrostate (volume in the phase space)
Example: two dices



2 3 4 5 6 7
3 4 5 6 7 8
4 5 6 7 8 9
5 6 7 8 9 10
6 7 8 9 10 11
7 8 9 10 11 12
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ENTROPY AND STATISTICAL PHYSICS
BOLTZMANN ENTROPY

Microstate: numbers in each dice
Macrostate: the sum of them

2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Occurrence

2 3 4 5 6 7 8 9 10 11 12
0.0

0.5

1.0

1.5

Entropy
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BIT RESET AND LANDAUER’S BOUND

The greater the entropy S, the greater the ignorance we have
about the actual state of the system.
Example: a bit represented by a particle in a box

Unknown bit value

V

0 1

W1 ∝ V

Bit reset to “1”

V/2

0 1

W2 ∝ V
2

∆S = S2 − S1 = κ log
W2

W1
= κ log

V/2
V

= −κ log 2

In order to have dSSys + dSR ≥ 0, the environment entropy
should increase of at least κ log 2
At least a heat ∆Q = κT log 2 must be dissipated
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CLASSICAL LANDAUER’S PRINCIPLE - SUMMARY

Logical irreversibity⇒ Physical irreversibility
Entropy generation⇒ Heat dissipation:

∆Q ≥ κT log 2 per bit-reset operation

The principle is based on the equivalence between
thermodynamical and statistical entropy

Orders of magnitude:

at room temperature, κT log 2 ' 2.9× 10−21 J
1 eV ' 1.6× 10−19 J
Current dissipation levels: 10−17 ∼ 10−16 J,
4 to 5 orders of magnitude above the Landauer’s bound!

R. Landauer, Irreversibility and Heat Generation in the
Computing Process, IBM J. Res. Develop. Vol. 5 No. 3, 1961
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Basics of quantum mechanics

A word of caution:

“If quantum mechanics hasn’t profoundly shocked you,
you haven’t understood it yet.”

Niels Bohr

MARCO PEZZUTTO AND YASSER OMAR MINIMAL ENERGY DISSIPATION - LANDAUER’S PRINCIPLE



WHAT IS QUANTUM MECHANICS?

The physical theory we employ to describe nature at the atomic
scale and beneath

. . . electrons in atoms and molecules, chemical bonds, lasers and
light-matter interaction

nuclear physics, elementary particle physics, nuclear energy . . .
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POSTULATES OF QUANTUM MECHANICS
VECTOR STATES

In classical mechanics - The state of a point-like particle: 6
real coordinates, the position ~q and the momentum ~p. The
space of the states is R3 ⊕ R3

In quantum mechanics, the state is specified by the

normalized Wave function, or state vector |ψ〉

|ψ〉 can be
a finite-component vector: |ψ〉 = (ψ1, ψ2, . . . , ψn)
an infinite-component vector: |ψ〉 = (ψ1, ψ2, . . . )
a “continuous-component” vector . . . i.e. a function:

x1 x2 x3 

f(x1)

f(x2)
f(x3)

...  
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QUANTUM MECHANICS - VECTOR STATES

No matter the dimension, the space of states |ψ〉 has always the
property of being a Hilbert space H1

The space is on complex numbers (ie vectors have complex
components, not just real)
Notation - Scalar product

(ψ∗1 , ψ
∗
2 , . . . , ψ

∗
n)


φ1
φ2
...
φn

 = 〈ψ|φ〉 = a ∈ C , 〈φ|ψ〉 = a∗

Superposition principle - If |ψ〉 and |φ〉 are vector states, also

|χ〉 = |ψ〉+ |φ〉 is a vector state

1 A complete abstract vector space with an inner product that
allows length and angle to be measured.
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QUANTUM MECHANICS - PROJECTORS

Projectors: operators H → H, e.g. Cn → Cn

v

u

a=u.v

P̂v |u〉 = a |v〉 = (〈v |u〉) |v〉 = (|v〉〈v |) |u〉
⇒ P̂v = |v〉〈v | ∈ Mn×n(C)

external product of v with itself:

|v〉〈v | =


v1
v2
...

vn

 (v∗1 , v
∗
2 , . . . , v

∗
n ) =

v1v∗1 . . . v1v∗n
...

...
vnv∗1 . . . vnv∗n
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MEASUREMENT - STERN-GERLACH EXPERIMENT

Spin: Intrinsic angular momentum of a particle, even if
pointlike (!) - Nothing rotates along any axis...
⇒ Particles also have an intrinsic magnetic moment

Magnetic moment - magnetic field interaction: Um = −~µ · ~B
Force: Fz = ∂(~µ · ~B)/∂z = µz∂(Bz)/∂z
Experimental setup and first measurement:

z

y Bz 

Inhomogeneus 
magnetic field

e

Unpolarized 
elecron source

Detector

50%

50%

z, up

z, down

First strangeness: only 2 outcomes! → Space quantization
Let’s denote the outcome states by |↑z〉 and |↓z〉
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MEASUREMENT - STERN-GERLACH EXPERIMENT

Second measurement:

z

y Bz 
e

100%
z, up
50%

z, down
50%

Bz 
z, up

Seems obvious, but it turns there is something more . . .
The state changes to either |↑z〉 or |↓z〉!
Third measurement: rotation of the ~B field direction

z

y
50%

x, right

x, left

Bx 
z, up

z, down

stop

50%

  

Denote the x-outcome states by |Rx〉 and |Lx〉; it seems like

|↑z〉 = (|Rx〉+ |Lx〉)/
√

2
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MEASUREMENT - STERN-GERLACH EXPERIMENT

Of course, just like before,

z

y
Bx 

100%
x, right
50%

x, left
50%

Bx 
x, right

z, up

|↑z〉 is a superposition of |Rx〉 + |Lx〉, but
the measurement destroys the superposition
The state changes to either |Rx〉 or |Lx〉
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MEASUREMENT - STERN-GERLACH EXPERIMENT

This is proven by the fourth measurement:

z

y
Bx 

x, right
50%

x, left
50%

Bz 
z, up

z, up
z, down

stop

50%

50%

The |↓z〉 component has reappeared!
Now it seems like

|Rx〉 =
|↑z〉+ |↓z〉√

2
To summarize{

|Rx〉 = |↑z〉+|↓z〉√
2

|Lx〉 = |↑z〉−|↓z〉√
2

{
|↑z〉 = |Rx 〉+|Lx 〉√

2
|↓z〉 = |Rx 〉−|Lx 〉√

2
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MEASUREMENT - POSTULATES

We want to measure a quantity A that can assume a range
of values {αj} (finite, discrete or continuous)
E.g. Energy E , momentum p, position q . . .
To the outcome set {αj} we associate a set of (orthogonal)
vectors { |aj〉 }
If the system is prepared in one of these vector states, e.g.
|ak 〉, a measurement of A gives the corresponding value
αk with probability 100 %
Given the system prepared in a generic state |ψ〉, a single
measurement of A will cause |ψ〉 to be projected on one of
vectors { |aj〉 }, e.g.:

|ψ〉 → |a1〉

⇒ the outcome of this measurement is α1
Measurement changes the state

(Collapse of the wave function)
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MEASUREMENT - POSTULATES

Repeating the process many times on identical copies of the
initial state |ψ〉, we find on average each of the outcomes {αj}
appearing with probability |〈aj |ψ〉|2

|ψ〉 →


|a1〉 with prob. |〈a1|ψ〉|2
...
|an〉 with prob. |〈an|ψ〉|2

A first measurement of A gives, say, αk ;
if we repeat the measurement, we find αk with prob. 100 %
Indeed the system state has changed to |ak 〉
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SCHRÖDINGER EQUATION - UNITARY EVOLUTION

Dynamics - Schrödinger equation

i~
∂ |ψ〉
∂t

= − ~2

2m
∇2 |ψ〉+ V |ψ〉 = Ĥ |ψ〉

Ĥ = Hamiltonian, ~ = Plank constant ' 1.054× 10−34J · s
Solution, isolated systems: Reversible Unitary evolution

|ψt〉 = e−
i
~ Ĥ t |ψ0〉 = Ût |ψ0〉

Unitary operators preserve norms and scalar products

t=0

t=t1

U(t1)

Complex equivalent of rotations and changes of basis for real
vectors
Time-reversed operator: Û†t = Û−1

t = Û−t , Ût Û
†
t = Û†t Ût = I
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SYMMETRY PRINCIPLE - PAULI PRINCIPLE

The collective wave function of a state of multiple identical
particles must be either totally symmetric or totally
antisymmetric under the exchange of any pair of particles
Wave functions of many integer spin particles (bosons) are
symmetric

ψ(1,2)→ ψ(2,1) = +ψ(1,2)

Wave functions of many half-integer spin particles
(fermions) are antisymmetric

ψ(1,2)→ ψ(2,1) = −ψ(1,2)

Pauli exclusion principle: since electrons are spin-1/2
particles, an atomic orbital can accommodate at most 2
electrons with opposite spin.
⇒ one of the reasons why solid bodies cannot occupy the
same place at the same time!
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MIXED STATES - DENSITY MATRIX

Pure states:
|ψ〉 ↔ P̂ψ = |ψ〉〈ψ|

Ignorance about the exact system state: statistical mixture

{pj , |ψj〉 }, pj ∈ [0,1],
∑

j

pj = 1

Mixed states:

% =
∑

j

pj |ψj〉〈ψj | ∈ Mn×n(C)

Density matrix - Unitary evolution:

|ψj,0〉 → |ψj,t〉 = Ût |ψj,0〉

%0 → %t = Ût%0Û†t
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BIPARTITE SYSTEMS

H = HA ⊗HB, e.g. for the spins of two electrons, or the
polarizations of two photons, HA ⊗HB = C2 ⊗ C2 = C4

Pure states: |ψAB〉 = |ψA〉 ⊗ |ψB〉, e.g.

|ψA〉 =

(
a1
a2

)
, |ψB〉 =

(
b1
b2

)
,

|ψA〉 ⊗ |ψB〉 =

(
a1
a2

)
⊗
(

b1
b2

)
=


a1b1
a1b2
a2b1
a2b2


Mixed states:

%AB =
∑
j,k

cj,k %
A
j ⊗ %B

k

Local states of %AB - Partial averages (partial trace)

%A = average on B of %AB = TrB[%AB]

%B = average on A of %AB = TrA[%AB]
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ENTANGLEMENT

Separable pure states: product of two local states

|ψAB〉 = |ψA〉 ⊗ |ψB〉

Entangled pure states: states that are not separable, e.g.

|Φ+〉 =
|↑〉A ⊗ |↑〉B + |↓〉A ⊗ |↓〉B√

2

Local states
Separable states:{

|ψAB〉 → average on A→ |ψB〉 pure
|ψAB〉 → average on B→ |ψA〉 pure

Entangled states:

|Φ+〉〈Φ+| → average on B→ | ↑〉A〈↑ |A + | ↓〉A〈↓ |A
2

MIXED!
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ENTANGLEMENT

What does this mean?
Given the AB state |Φ+〉, A measures on his side with Bz :{

50% A finds |↑〉 ⇒ collapse: |Φ+〉 → |↑〉A ⊗ |↑〉B
50% A finds |↓〉 ⇒ collapse: |Φ+〉 → |↓〉A ⊗ |↓〉B

Consequences:
A and B each have maximal ignorance about the system
state, even though the global state is pure
A measure of A affects instantaneously what B will
measure

Entanglement↔ Non local correlations
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QUANTIFYING INFORMATION

Given a mixed state % =
∑

j pj |ψj〉〈ψj |, the Von Neumann entropy
quantifies the ignorance we have about its state, the randomness of
the statistical mixture it represents

VON NEUMANN ENTROPY

S(%) = −Tr[% log %] ≥ 0

If 〈ψj |ψk 〉 = δjk ({pj} are eigenvalues of %), then S(%) = −
∑

j pj log pj
Some important properties:

Certainty: if % = |ψ〉〈ψ| (no statistical uncertainty)
then S(|ψ〉〈ψ|) = 0 and v/v

Additivity: for a bipartite uncorrelated state %AB = %A ⊗ %B,

S(%AB) = S(%A) + S(%B)

Maximum: S(%) is maximum when the statistical mixture is the
maximally random random one,

all pj =
1
n
⇒ −

∑
j

pj log pj = log n
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QUANTIFYING CORRELATIONS

Given a system A described by %A, if we perform a measurement
it collapses on a vector |ψA〉, therefore now we know it exactly.
S(%) quantifies the amount of information we gain:

S(%A)− S(|ψA〉〈ψA|) = S(%A)

Quantifying the degree of correlation between two systems:
how much information can I learn about B, if I measure A?

A B

S(A) S(B)

S(AB)

   

I(A:B)

MUTUAL INFORMATION

I(A : B) = S(%A) + S(%B)− S(%AB) = I(B : A) ≥ 0,

%A,B = TrB,A[%AB], local states
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DISTANCE BETWEEN STATES

RELATIVE ENTROPY

D(%‖σ) = Tr[% log %− % logσ]

D(%‖σ) ≥ 0 for all %, σ
D(%‖σ) = 0⇔ % = σ
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BASICS OF QUANTUM MECHANICS - SUMMARY

Physical states are represented by vectors in a Hilbert
space
Measurement changes the state (Wave function collapse)
Superposition principle
Measurement destroys superposition
Schrödinger dynamics and unitary reversible evolution
Mixed states: density matrix
Bipartite states and local states
Entanglement
Quantifying information: Von Neumann entropy
Quantifying correlations: mutual information
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Landauer’s principle in quantum physics

Does Landauer’s principle apply
also at microscopic scales?
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QUANTUM LANDAUER’S PRINCIPLE
A RECENT PROPOSAL

Recent proof and generalization of the Landauer’s bound
∆Q ≥ T ∆S in a statistical physics framework
Assumptions:

Process involves only system S + reservoir R, now both of
finite dimension dS and dR (and nothing else!)
System and reservoir are initially uncorrelated:

%SR = %S ⊗ %R

The reservoir is initially in thermal equilibrium at
temperature T :

%R =
e−βHR

Tre−βHR

β = 1/κT , inverse temperature,
HR = reservoir Hamiltonian
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QUANTUM LANDAUER’S PRINCIPLE
A RECENT PROPOSAL

Global unitary evolution:

%′SR = Û%SRÛ†

Local final states: %′S,R = TrR,S[%′SR]
S and R can develop classical or quantum correlations
(entanglement)
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QUANTUM LANDAUER’S PRINCIPLE
A RECENT PROPOSAL

Quantities involved:
Entropy decrease of the system:

∆S = Sin − Sfin = S(%S)− S(%S′),

S(%) = −Tr[% log %] - Statistical/info-theoretical entropy
Heat transferred to the reservoir - Thermodynamics

∆Q = E ′R − ER = Tr
(
HR(%′R − %R)

)
QUANTUM ENUNCIATION OF LANDAUER’S PRINCIPLE

β∆Q = ∆S + I(S′ : R′) + D(%′R‖%R)

Since I(S′ : R′) ≥ 0, D(%′R‖%R) ≥ 0,

β∆Q ≥ ∆S
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QUANTUM LANDAUER’S PRINCIPLE
A RECENT PROPOSAL

With few reasonable assumptions, the result is generalized to
the case of an infinite-dimensional reservoir, closer to what
one expects for a thermal bath:

S and R both describable by separable Hilbert spaces
S(%S) <∞
HR bounded below⇒ S(%R) <∞
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QUANTUM LANDAUER’S PRINCIPLE
A RECENT PROPOSAL

Some remarks:
In this formulation, Landauer’s principle is derived as a
consequence of the second law of thermodynamics,
formulated as(

S(%′S)− S(%S)
)

+
(
S(%′R)− S(%R)

)
≥ 0

The connection between statistical/information theoretical
entropy and thermodynamics through interpretation of
ER′ − ER as heat

Reference: D. Reeb & M. M. Wolf, (Im-)Proving Landauer’s
Principle, arXiv:1306.4352v2
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QUANTUM LANDAUER’S PRINCIPLE - SUMMARY

System and reservoir initially uncorrelated
Reservoir initially in a thermal state
Global unitary evolution

Equality form of Landauer’s principle

β∆Q = ∆S + I(S′ : R′) + D(%′R‖%R)

⇒ β∆Q ≥ ∆S

It can be violated if any of the assumptions is dropped!
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CONCLUSIVE SUMMARY

Classical Landauer’s Principle:
logical irreversibility implies physical irreversibility and heat
dissipation of κT log 2 per bit-reset operation
Quantum mechanics:

measurement changes the state and destroys
superposition
Schrödinger equation and unitary evolution
Quantifying information and correlations:
Von Neumann entropy and mutual information

Landauer’s principle in quantum physics:
a recent proposal in a statistical physics framework
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OPEN QUESTIONS AND FINAL REMARKS

The classical version of Landauer’s principle is based on the
assumption of equivalence between thermodynamic and
information theoretical entropy
Is this assumption legitimate and reasonable?
Given the energy scale indicated by the Landauer’s bound
(' 10−21 J) it is likely we cannot do without a quantum
formulation
Landauer’s bound as a goal - Seems we still have a huge
margin of improvement in current technologies, that dissipate
much more than Landauer’s bound
Landauer’s bound as a challenge - On the theoretical side:
revisit the assumptions at the base of its formulation and
possibly find other bounds
On the experimental side: designing and implementing
technologies and devices that approach (or even break)
Landauer’s bound

Landauer project
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